Rabu, 21 Maret 2018

Sonifikasi

Sonifikasi

Sonikasi adalah suatu teknologi yang memanfaatkan gelombang ultrasonik. Ultrasonik adalah suara atau getaran dengan frekuensi yang terlalu tinggi untuk bisa didengar oleh manusia, yaitu kira-kira di atas 20 kHz. Gelombang ultrasonik dapat merambat dalam medium padat, cair, dan gas. Proses sonikasi ini mengubah sinyal listrik menjadi getaran fisik yang dapat diarahkan untuk suatu bahan dengan menggunakan alat yang bernama sonikator. Sonikasi ini biasanya dilakukan untuk memecah senyawa atau sel untuk pemeriksaan lebih lanjut. Getaran ini memiliki efek yang sangat kuat pada larutan, menyebabkan pecahnya molekul dan putusnya sel. 
Bagian utama dari perangkat sonikasi adalah generator listrik ultrasonik. Perangkat ini membuat sinyal (biasanya sekitar 20 kHz) yang berkekuatan ke transduser. Transduser ini mengubah sinyal listrik dengan menggunakan kristal piezoelektrik, atau kristal yang merespon langsung ke listrik dengan menciptakan getaran mekanis dan kemudian dikeluarkan melewati probeProbe sonikasi mengirimkan getaran ke larutan yang disonikasi. Probe ini akan bergerak seiring dengan getaran dan mentransmisikan ke dalam larutan. Probe bergerak naik dan turun pada tingkat kecepatan yang tinggi, meskipun amplitudo dapat dikontrol dan dipilih berdasarkan kualitas larutan yang disonikasi. Gerakan cepat probe menimbulkan efek yang disebut kavitasi. Rangkaian alat sonikasi dapat dilihat pada Gambar I.


Gambar I. Rangkaian Alat Sonikasi

Dalam hal kinetika kimia, ultrasonik dapat meningkatkan kereaktifan kimia pada suatu sistem yang secara efektif bertindak sebagai katalis untuk lebih mereaktifkan atom – atom dan molekul dalam sistem. Pada reaksi yang menggunakan bahan padat, ultrasonik ini berfungsi untuk memecah padatan dari energi yang ditimbulkan akibat runtuhnya kavitasi. Dampaknya ialah luas permukaan padatan lebih besar sehingga laju reaksi meningkat (Suslick, 1989). Semakin lama waktu sonikasi, ukuran partikel cenderung lebih homogen dan mengecil yang akhirnya menuju ukuran nanopartikel yang stabil serta penggumpalan pun semakin berkurang. Hal ini disebabkan karena gelombang kejut pada metode sonikasi dapat memisahkan penggumpalan partikel (agglomeration) dan terjadi dispersi sempurna dengan penambahan surfaktan sebagai penstabil. 
Daya ultrasonik meningkatkan perubahan kimia dan fisik dalam media cair melalui generasi dan pecah dari gelembung kavitasi. Seperti ultrasonik, gelombang suara disebarkan melalui serangkaian kompresi dan penghalusan gelombang diinduksi dalam molekul medium yang dilewatinya. Pada daya yang cukup tinggi siklus penghalusan dapat melebihi kekuatan menarik dari molekul cairan dan kavitasi gelembung akan terbentuk. Gelembung tersebut tumbuh dengan proses yang dikenal sebagai difusi yang dikoreksi yaitu sejumlah kecil uap (atau gas) dari media memasuki gelembung selama fase ekspansi dan tidak sepenuhnya dikeluarkan selama kompresi. Gelembung berkembang selama periode beberapa siklus untuk ukuran kesetimbangan untuk frekuensi tertentu digunakan. Ini adalah fenomena gelembung ketika pecah dalam siklus kompresi yang menghasilkan energi untuk efek kimia dan mekanik (Gambar II). Pecahnya gelembung kavitasi merupakan fenomena luar biasa yang disebabkan oleh kekuatan suara. Dalam sistem cair pada frekuensi ultrasonik 20kHz setiap pecahnya gelembung kavitasi bertindak sebagai lokal "hotspot" menghasilkan suhu sekitar 4.000 K dan tekanan lebih dari 1000 atmosfer. 


Gambar II. Generasi Acoustic Cavitation

Menurut Gogate berkaitan dengan reaksi kimia, kavitasi dapat mempengaruhi hal berikut:

a. Mengurangi waktu reaksi

b. Meningkatkan yield dalam reaksi kimia
c. Mengurangi ”force” suhu dan tekanan
d. Mengurangi periode induksi dan reaksi yang diinginkan
e. Meningkatkan selektivitas
f. Membangkitkan radikal bebas        
 
Sebagai tambahan terhadap timbulnya kondisi-kondisi ekstrem di dalam gelembung juga dihasilkan efek mekanik seperti terjadinya collaps gelembung yang sangat cepat. Hal ini juga sangat penting dalam bidang sintesis dan termasuk juga degassing yang sangat cepat dari kavitasi cairan serta dalam hal pembentukan kristal yang cepat.

Pembersih Ultrasonik

Pembersih Ultrasonik

PS-20A

Bagaimana ultrasonik cleaner bekerja ???

Pembersihan ultrasonik adalah penghapusan yang cepat dan lengkap kontaminan dari objek dengan cara membenamkan mereka dalam tangki cairan dibanjiri dengan frekuensi tinggi gelombang suara. Gelombang suara yang tidak terdengar membuat aksi sikat menggosok dalam cairan.
Proses ini disebabkan oleh frekuensi tinggi energi listrik yang diubah oleh transducer menjadi gelombang suara frekuensi tinggi – energi ultrasonik. Kemampuannya untuk membersihkan zat bahkan yang paling ulet dari item berasal dari inti unit: transduser. Kekuatan membersihkan dari unit berasal dari kinerja transduser.
Efisiensi transduser akan mempengaruhi baik waktu pembersihan dan kemanjuran dicapai selama siklus pembersihan. Sebuah transduser berkualitas buruk akan menggunakan daya lebih dan memakan waktu lebih lama untuk membersihkan barang-barang dari transduser yang baik.
Ultrasonic cleaning
Energi ultrasonik memasuki cairan dalam tangki dan menyebabkan pembentukan cepat dan runtuhnya gelembung menit: sebuah fenomena yang dikenal sebagai kavitasi. Gelembung meningkat pesat dalam ukuran sampai mereka meledak terhadap permukaan item direndam dalam tangki dalam pelepasan energi yang sangat besar, yang mengangkat kontaminasi dari permukaan dan relung terdalam bagian berbentuk rumit.
Ini adalah kemampuan untuk membersihkan sendi box, engsel dan benang dengan cepat dan efektif yang telah membuat pembersih ultrasonik pilihan pertama bagi banyak industri selama lebih dari 25 tahun.
Ada banyak variabel yang perlu mempertimbangkan saat membersihkan barang-barang. Panas, listrik, frekuensi, jenis deterjen dan waktu semua mempengaruhi proses pembersihan tetapi fleksibilitas ultrasonik berarti bahwa ini semua dapat dimasukkan ke dalam proses untuk mencapai hasil yang paling efektif.
Sebagai gelembung meledak dan kavitasipasti akan  terjadi, larutan pembersih bergegas ke dalam celah yang ditinggalkan oleh gelembung. Sebagai cairan ini membuat kontak dengan forceps, kontaminan yang hadir akan dihapus.

Terapi Ultrasonik

Terapi Ultrasonik



TERAPI ULTRASONIK (US)
By : joko santoso.Amf (physiotherapist of PT.GULA PUTIH MATARAM)
Pengertian
Terapi dengan menggunakan mekanisme getaran dari gelombang suaradengan frekuensi tinggi lebih dari 20.000 Hz.
Tujuan
1. Membantu mempercepat proses penyembuhan jaringan lunak.
2. Membantu mengurangi rasa nyeri pada otot dan sendi.
3. Membantu meningkatkan kemampuan regenerasi jaringan.
4. Membantu relaksasi otot dan mengurangi spasme otot.

Sonar

Sonar

Sonar (Singkatan dari bahasa InggrisSOund Navigation And Ranging), merupakan istilah Amerika yang pertama kali digunakan semasa Perang Dunia, yang berarti penjarakan dan navigasi suara, adalah sebuah teknik yang menggunakan penjalaran suara dalam air untuk navigasi atau mendeteksi kendaraan air lainnya. Sementara itu, Inggris punya sebutan lain untuk sonar, yakni ASDIC (Anti-Submarine Detection Investigation Committee).
  1. Cara Kerja

     Sonar merupakan sistem yang menggunakan gelombang suara bawah air yang dipancarkan dan dipantulkan untuk mendeteksi dan menetapkan lokasi objek di bawah laut atau untuk mengukur jarak bawah laut. Sejauh ini sonar telah luas digunakan untuk mendeteksi kapal selam dan ranjau, mendeteksi kedalaman, penangkapan ikan komersial, keselamatan penyelaman, dan komunikasi di laut.
Cara kerja perlengkapan sonar adalah dengan mengirim gelombang suara bawah permukaan dan kemudian menunggu untuk gelombang pantulan (echo). Data suara dipancar ulang ke operator melalui pengeras suara atau ditayangkan pada monitor.

     2. Dua Jenis Sonar
      Alat sonar pertama digolongkan sebagai sonar pasif, di mana tidak ada sinyal yang dikirim keluar.
Pada tahun 1918 Inggris dan AS membuat sistem aktif, di mana sinyal sonar aktif dikirim dan diterima kembali. Misalnya saja untuk mengetahui jarak satu objek, petugas sonar mengukur waktu yang diperlukan oleh sinyal sejak dipancarkan hingga diterima kembali. Karena tidak ada sinyal yang dikirim pada sistem pasif, alat hanya mendengarkan. Pada sistem pasif maju, ada bank data sonik (sumber bunyi) yang besar. Sistem komputer menggunakan bank data tadi untuk mengenali kelas kapal, juga aksinya (kecepatan atau senjata yang ditembakkan).

Ultrasonografi (USG)

Ultrasonografi

Ultrasonografi (USG) adalah alat pemeriksaan dengan menggunakan ultrasound (gelombang suara) yang dipancarkan oleh transduser. Suara merupakan fenomena fisika untuk mentransfer energi dari satu titik ke titik yang lainnya sehingga mendapatkan gambaran yang jelas hampir semua bagian tubuh, kecuali bagian tubuh yang dipenuhi udara atau ditutupi tulang. 

Mekanisme Pendengaran Manusia

Mekanisme Pendengaran Manusia



Bagaimana bunyi dapat kita dengar? Mungkin pertanyaan seperti ini akan muncul ketika kita membahas tentang  bagaiamana proses manusia bisa mendengar sebuah suara, jadi seperti ini Suara, sampai pada lubang telinga karena getarannya diterima oleh gendang suara (membran timpani). Getaran di membran timpani ini akan diteruskan ke bagian tengah telinga yaitu ke tulang martil, landasan, kemudian sanggurdi. Impuls suara diteruskan ke telinga bagian dalam yaitu ke rumah siput dan merangsang saraf di sekitar cairan rumah siput dan dikirim ke otak. Selanjutnya di otak, suara tersebut diolah sehingga kita dapat mendengar dan mengartikannya. Secara skematis proses mendengar dapat ditulis sebagai berikut.

Getaran Suara =>… masuk….Daun telinga =>… masuk….Saluran pendengaran=>…ditangkap…Membran timpani=>…melewati…
Tulang martil=>…melewati…Tulang landasan=>…melewati…Tulang sanggurdi=>…diterima…Kortil=>…diteruskan…Lobus temporalis=>…hasil…<<Suara>>

Jadi seperti itulah mekanisme proses pendengaran manusia

Bunyi

Bunyi

Bunyi atau suara adalah pemampatan mekanis atau gelombang longitudinal yang merambat melalui medium. Medium atau zat perantara ini dapat berupa zat cairpadatgas. Jadi, gelombang bunyi dapat merambat misalnya di dalam airbatu bara, atau udara.
Kebanyakan suara adalah gabungan berbagai sinyal getar terdiri dari gelombang harmonis, tetapi suara murni secara teoretis dapat dijelaskan dengan kecepatan getar osilasi atau frekuensi yang diukur dalam satuan getaran Hertz (Hz) dan amplitudo atau kenyaringan bunyi dengan pengukuran dalam satuan tekanan suara desibel (dB).
Manusia mendengar bunyi saat gelombang bunyi, yaitu getaran di udara atau medium lain, sampai ke gendang telinga manusia. Batas frekuensi bunyi yang dapat didengar oleh telinga manusia berkisar antara 20 Hz sampai 20 kHz pada amplitudo berbagai variasi dalam kurva responsnya. Suara di atas 20 kHz disebut ultrasonik dan di bawah 20 Hz disebut infrasonik.
     1. Kenyaringan dan Desibel
          Bunyi kereta lebih nyaring daripada bunyi bisikan, sebab bunyi kereta menghasilkan getaran lebih besar di udara. Kenyaringan bunyi juga bergantung pada jarak kita dari sumber bunyi. Kenyaringan diukur dalam satuan tekanan suara desibel (dB). Bunyi pesawat jet yang lepas landas mencapai tekanan suara sekitar 120 dB. Sedang bunyi desiran daun sekitar 33 dB.
Kebanyakan suara adalah gabungan berbagai sinyal getaran, tetapi suara murni secara teoretis dapat dijelaskan dengan adanya kecepatan getar osilasi atau frekuensi yang diukur dalam satuan Hertz (Hz) dan amplitudo atau kenyaringan bunyi dengan pengukuran dalam satuan desibel (dB).
Manusia mendengar bunyi saat gelombang bunyi bergetar, yaitu getaran merambat di udara atau medium lain, sampai ke gendang telinga manusia. Ambang frekuensi bunyi yang dapat didengar oleh telinga manusia berkisar getaran frekuensi 20 Hz sampai 20.000 Hz, pada amplitudo getaran dengan berbagai variasi dalam kurva responsnya. Suara di atas 20.000 Hz disebut ultrasonik dan di bawah 20 Hz disebut infrasonik.
     2. Gema
            Gema terjadi jika bunyi dipantulkan oleh suatu permukaan, seperti tebing pegunungan, tembok dan getaran kembali pada telinga kita segera setelah bunyi asli kita dengar. Kejernihan vokal dan musik dalam ruangan atau gedung konser tergantung pada cara bunyi bergema di dalamnya. Suara gema merupakan efek suara pantulan yang mengalami penundaan waktu atau (delay line).
Bunyi atau suara adalah kompresi mekanikal atau gelombang longitudinal yang merambat melalui medium. Medium atau zat perantara ini dapat berupa zat cair, padat, gas. Jadi, gelombang bunyi dapat merambat misalnya di dalam air, batang kayu, atau udara, jadi gema adalah gelombang pantul hasil pergerakan gelombang yang dipancarkan sumber bunyi, yang mengalami penundaan waktu (delay) kembali ke telinga.
     3. Gelombang Bunyi
            Gelombang bunyi terdiri dari molekul-molekul udara yang bergetar merambat ke segala arah. Tiap saat, molekul-molekul itu berdesakan di beberapa tempat, sehingga menghasilkan wilayah tekanan tinggi, tapi di tempat lain merenggang, sehingga menghasilkan wilayah tekanan rendah. Gelombang bertekanan tinggi dan rendah secara bergantian bergerak di udara, menyebar dari sumber bunyi. Gelombang bunyi ini menghantarkan bunyi ke telinga manusia, Gelombang bunyi adalah gelombang longitudinal.
     4. Kecepatan Bunyi
            Bunyi merambat di udara dengan kecepatan 1.224 km/jam. Bunyi merambat lebih lambat jika suhu dan tekanan udara lebih rendah. Di udara tipis dan dingin pada ketinggian lebih dari 11 km, kecepatan bunyi 1.000 km/jam. Di air, kecepatannya 5.400 km/jam, jauh lebih cepat daripada di udara.
     5. Resonansi
            Suatu benda, misalnya gelas, mengeluarkan nada musik jika diketuk sebab ia memiliki frekuensi getaran alami sendiri. Jika kita menyanyikan nada musik berfrekuensi sama dengan suatu benda, benda itu akan bergetar. Peristiwa ini dinamakan resonansi. Bunyi yang sangat keras dapat mengakibatkan gelas beresonansi begitu kuatnya sehingga pecah. Sehingga karena resonansi benda ikut bergetarnya suatu benda ketika benda lain di dekatnya digetarkan.

Gelombang

Gelombang

1. PENDAHULUAN
Berdasarkan medium perambatannya, gelombang dikelompokkan menjadi dua, yaitu gelombang mekanik dan gelombang elektromagnetik. Gelombang mekanik yaitu gelombang yang memerlukan medium di dalam perambatannya. Contoh gelombang mekanik antara lain: gelombang bunyi, gelombang permukaan air, dan gelombang pada tali. Gelombang elektromagnetik adalah gelombang yang tidak memerlukan medium dalam perambatannya. Contoh : cahaya, gelombang radio, gelombang TV, sinar – X, dan sinar gamma.

2HAKEKAT GELOMBANG MEKANIK
A. Terjadinya Gelombang
Gelombang terjadi karena adanya usikan yang merambat.Menurut konsep fisika, cerminan gelombang merupakan rambatan usikan, sedangkan mediumnya tetap. Jadi, gelombang merupakan rambatan pemindahan energi tanpa diikuti pemindahan massa medium.
monopolesourcedsphericalwaveKlik gambar untuk lihat animasinya
B. Pengertian Gelombang Mekanik
Gelombang mekanik adalah gelombang yang memerlukan medium dalam perambatannya.
Contoh gelombang mekanik :
– Gelombang yang terjadi pada tali jika salah satu ujungnya digerak-gerakkan.
104_0167
– Gelombang yang terjadi pada permukaan air jika diberikan usikan padanya ( misal dengan menjatuhkan batu di atas permukaan air kolam yang tenang ).
frequency_fast6
C. Gelombang Transversal
Gelombang transversal adalah gelombang yang arah rambatannya tegak lurus arah getarannya ( usikannya ).
Perhatikan ilustrasi berikut ini !
plane-waveKlik gambar untuk lihat animasinya
clip_image002_thumb4
Contoh gelombang transversal :
– getaran sinar gitas yang dipetik
– getaran tali yang digoyang-goyangkan pada salah satu ujungnya

A. Gelombang Longitudinal
Gelombang longitudinal adalah gelombang yang arah rambatannya sejajar dengan arah getarnya ( arah usikannya )
clip_image002p
Perhatikan ilustrasi berikut ini !
lw
Contoh gelombang longitudinal :
– gelombang pada slinki yang diikatkan kedua ujungnya pada statif kemudian diberikan usikan pada salah satu ujungnya
longitudinal
– gelombang bunyi di udara
image027
1. Panjang Gelombang
A. Pengertian Panjang Gelombang
Panjang satu gelombang sama dengan jarak yang ditempuh dalam waktu satu periode.
1) Panjang gelombang dari gelombang transversal
Perhatikan ilustrasi berikut!
clip_image004[3]
111_Standing_Wave_Animated
Klik gambar untuk lihat animasinya
Pada gelombang transversal, satu gelombang terdiri atas 3 simpul dan 2 perut. Jarak antara dua simpul atau dua perut yang berurutan disebut setengah panjang gelombang atau ½ λ (lambda),
2) Panjang gelombang dari gelombang longitudina
Perhatikan ilustrasi berikut !
clip_image005[3]
Pada gelombang longitudinal, satu gelombang (1l) terdiri dari 1 rapatan dan 1 reggangan.
B. Cepat Rambat Gelombang
Jarak yang ditempuh oleh gelombang dalam satu sekon disebut cepat rambat gelombang. Cepat rambat gelombang dilambangkan dengan v dan satuannya m/s atau m s-1. Hubungan antara v, f, λ, dan T adalah sebagai berikut :
cepat rambat gelombang
Keterangan :
λ= panjang gelombang , satuannya meter ( m )
v = kecepatan rambatan gelombang, satuannya meter / sekon ( ms)
T = periode gelombang , satuannya detik atau sekon ( s )
f = frekuensi gelombang, satuannya 1/detik atau 1/sekon ( s-1 )
2. Pemantulan Gelombang
Jika gelombang melalui suatu rintangan atau hambatan, misalnya benda padat, maka gelombang tersebut akan dipantulkan. Pemantulan ini merupakan salah satu sifat dari gelombang.
Berikut ini adalah contoh pemantulan pada gelombang tali
pantulan gelombang_thumb[3]
fix
Pemantulan ujung terikat

free
Pemantulan ujung bebas
Pemantulan gelombang pada ujung tetap akan mengalami perubahan bentuk atau fase. Akan tetapi pemantulan gelombang pada ujung bebas tidak mengubah bentuk atau fasenya.
Contoh Soal :
1. Dalam 1 sekon dihasilkan gelombang seperti gambar di bawah ini
soal1_thumb[1]
a. berapakah frekuensi gelombang tersebut?
b. Bila jarak PQ = 2 cm, maka berapakah ?
Penyelesaian :
Menurut gambar, gelombang yang terjadi sebanyak 2 gelombang. Berarti, f = 2 gelombang / sekon atau = 2 Hz.
Pada gambar terjadi 2 gelombang ( 2λ ). Jadi 2 λ= 2 cm atau λ= 1 cm.
2. Seutas tali yang panjangnya 8 m direntangkan lalu digetarkan. Selama 2 sekon terjadi gelombang seperti pada gambar berikut! Tentukan λ, f, T, dan v.
soal2_thumb[2]
Penyelesaian :
Dari gambar terjadi gelombang sebanyak 4 λ.
Berarti : 4λ= 8 m sehingga λ = 8/4 = 2 m
Selama 2 sekon terjadi 4 λ atau selama 1 sekon terjadi 2λ
Jadi, f = 2 gelombang / sekon atau f = 2 Hz
T = 1/f = ½ sekon sehingga v =λ f = 2 m x 2 Hz = 4 m s-1

Getaran

Getaran

1. Pengertian Getaran
a. Definisi Getaran
Getaran adalah gerak bolak – bolik secara berkala melalui suatu titik keseimbangan. Pada umumnya setiap benda dapat melakukan getaran. Suatu benda dikatakan bergetar bila benda itu bergerak bolak bolik secara berkala melalui titik keseimbangan.

pendulumayunan movie
Getaran adalah gerak bolak – balik di sekitar titik setimbang;
2 = titik setimbang ;  1 dan 3 = titik terjauh (Amplitudo);

b. Beberapa Contoh Getaran
Beberapa contoh getaran yang dapat kita jumpai dalam kehidupan sehari – hari antara lain :
– sinar gitar yang dipetik
– bandul jam dinding yang sedang bergoyang
jam dinding
– ayunan anak-anak yang sedang dimainkan
– mistar plastik yang dijepit pada salah satu ujungnya, lalu ujung lain diberi simpangan             dengan cara menariknya, kemudian dilepaskan tarikannya.
img_mid_4430
– Pegas yang diberi beban.
ayunan








2. Periode dan Frekuensi Getaran
Perhatikan gambar berikut ini!
definisi2
  • titik A merupakan titik keseimbangan
  • simpangan terbesar terjauh bandul ( ditunjuk kan dengan jarak AB = AC ) disebut amplitudo getaran
  • jarak tempuh B – A – C – A – B disebut satu getaran penuh





a. Amplitudo
Dalam gambar 2 telah disebutkan bahwa amplitudo adalah simpangan terbesar dihitung dari kedudukan seimbang. Amplitudo diberi simbol A, dengan satuan meter.

b. Periode Getaran
Periode getaran adalah waktu yang digunakan dalam satu getaran dan diberi simbol T. Untuk gambar ayunan di atas, jika waktu yang diperlukan oleh bandul untuk bergerak dari B ke A, ke C, ke A, dan kembali ke B adalah 0,2 detik, maka periode getaran bandul tersebut 0,2 detik atau T = 0,2 detik = 0,2 s
Periode suatu getaran tidak tergantung pada amplitudo getaran.

c. Frekuensi Getaran
Frekuensi getaran adalah jumlah getaran yang dilakukan oleh sistem dalam satu detik, diberi simbol f. Untuk sistem ayunan bandul di atas, jika dalam waktu yang diperlukan oleh bandul untuk bergerak dari B ke A, A ke C, C ke A, dan kembali ke B sama dengan 0,2 detik, maka :
– dalam waktu 0,2 detik bandul menjalani satu getaran penuh
– dalam waktu 1 detik bandul menjalani 5 kali getaran penuh
Dikatakan bahwa frekuensi getaran sistem bandul tersebut adalah 5 getaran/detik atau f = 5 Hz.

d. Hubungan antara Periode dan Frekuensi Getaran
Dari definisi periode dan frekuensi getaran di atas, diperoleh hubungan :
rumus1
Keterangan :
T = periode, satuannya detik atau sekon
f = frekuensi getaran, satuannya 1/detik atau s-1 atau Hz

Teleskop

Teleskop PENGERTIAN TELESKOP Teleskop adalah sebuah alat bantu penglihatan (optik) untuk mengamati benda-benda yang jauh terutama...